首页> 外文OA文献 >Noise adaptive speech recognition in time-varying noise based on sequential Kullback proximal algorithm
【2h】

Noise adaptive speech recognition in time-varying noise based on sequential Kullback proximal algorithm

机译:基于顺序Kullback近邻算法的时变噪声中的噪声自适应语音识别

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We present a noise adaptive speech recognition approach, where time-varying noise parameter estimation and Viterbi process are combined together. The Viterbi process provides approximated joint likelihood of active partial paths and observation sequence given the noise parameter sequence estimated till previous frame. The joint likelihood after normalization provides approximation to the posterior probabilities of state sequences for an EM-type recursive process based on the sequential Kullback proximal algorithm to estimate the current noise parameter. The combined process can easily be applied to perform continuous speech recognition in presence of non-stationary noise. Experiments were conducted in simulated and real non-stationary noises. Results showed that the noise adaptive system provides significant improvements in word accuracy as compared to the baseline system (without noise compensation) and the normal noise compensation system (which assumes the noise to be stationary).
机译:我们提出了一种噪声自适应语音识别方法,其中时变噪声参数估计和维特比过程结合在一起。给定估计到前一帧的噪声参数序列,维特比过程提供了活动部分路径和观测序列的近似联合似然。归一化后的联合似然度基于序列Kullback近端算法估计当前噪声参数,从而为EM型递归过程提供了状态序列的后验概率的近似值。组合的过程可以很容易地应用于在存在非平稳噪声的情况下执行连续语音识别。在模拟和真实的非平稳噪声中进行了实验。结果表明,与基线系统(无噪声补偿)和普通噪声补偿系统(假定噪声是固定的)相比,噪声自适应系统在字词准确性方面有显着提高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号